Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia.

نویسندگان

  • My N Helms
  • Ling Yu
  • Bela Malik
  • Dean J Kleinhenz
  • C Michael Hart
  • Douglas C Eaton
چکیده

Several studies have shown that nitric oxide (NO) inhibits Na(+) transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na(+) channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug l-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 microM dexamethasone and 10% bovine serum. After 1.5 microM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound (P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability (P(o)) from 0.186 +/- 0.043 to 0.045 +/- 0.009 (n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na(+) transport is by altering iNOS production of NO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mTOR complex-2 activates ENaC by phosphorylating SGK1.

The serum- and glucocorticoid-induced kinase 1 (SGK1) plays a central role in hormone regulation of epithelial sodium (Na+) channel (ENaC)-dependent Na+ transport in the distal nephron. Phosphorylation within a carboxy-terminal domain, designated the hydrophobic motif (HM), determines the activity of SGK1, but the identity of the HM kinase is unknown. Here, we show that the highly conserved ser...

متن کامل

Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport.

The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (...

متن کامل

Invited Review Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ

Bhalla, Vivek, Rama Soundararajan, Alan C. Pao, Hongyan Li, and David Pearce. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol 291: F714–F721, 2006. First published May 23, 2006; doi:10.1152/ajprenal.00061.2006.—Regulation of ENaC occurs at several levels. The principal hormonal regulator of ENaC, aldosterone, acts through t...

متن کامل

An evolutionarily conserved N-terminal Sgk1 variant with enhanced stability and improved function.

Sgk1 is an aldosterone-induced kinase that regulates epithelial sodium channel (ENaC)-mediated Na+ transport in the collecting duct and connecting tubule of the kidney. The NH2 terminus of Sgk1 contains instability motifs that direct the ubiquitination of Sgk1 resulting in a rapidly degraded protein. By bioinformatic analysis, we identified a 5' variant alternate transcript of human Sgk1 (Sgk1_...

متن کامل

SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport.

The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ transport across tight epithelia and is the principal target of hormonal regulation, particularly by insulin and mineralocorticoids. Recently, the serine-threonine kinase (SGK) was identified as a rapidly mineralocorticoid-responsive gene, the product of which stimulates ENaC-mediated Na+ transport. Like its close rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 3  شماره 

صفحات  -

تاریخ انتشار 2005